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The equations of the theory of thin elastic shells possess a character- 
istic symmetry which has enabled an intrinsic analogy to be established 
between the elastic constants and the static and geometric elements 
which appear in the formulation of the theory. This is the so-called 
static-geometric analogy which was formulated by Goldenveizer for iso- 
tropic shells [ 1 1 The later generalized static- 
geometric analogy to cover the cases of orthotropic 
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enables the sets of equations of equilibrium and continuity to be com- 
bined to form a single complex set, and Hooke’s equations to be reduced 
to a set of three linear non-differential equations in complex forces 

18 I. 

It is well known that the static-geometric analogy enables each rela- 
tion found to be duplicated. These results then suggest the formulation 
of a single theory of thin shells in the complex domain which would re- 
duce the number of unknowns and the order of the equations by half. 

1. Quasi-invariants. The static-geometric analogy shows that the 
forces, moments, stress functions, displacements and strain components 
which appear in the homogeneous equations of the theory of thin shells 
can be divided into two groups (see appendix): so that each element of 
the first group containing forces, moments and stress functions corre- 
sponds to an element of the second group containing displacements and 
strains. 

A fraction comprising analogous elements, in which the numerator be- 
longs to the first group and the denominator to the second, has the di- 
mensions of a force. 

An expression relating the elements of one group only, will be con- 
sidered as belonging to this group, so that the equilibrium equation in 
terms of forces, for example, might refer to the first group, and the 
equation of continuity of deformation in terms of strains to the second, 
etc. Ihere are, in addition, equations which do not belong to the first 
or the second group. Hooke’s law, for example, would come within this 
category. 

Zet us suppose that e is an element occurring in the first group (a 
force, a stress function or any homogeneous relation between the ele- 
ments of the first group), and that e* is its corresponding element in 
the second group. 

We shall define a complex element as an element of the form 

S, = e -i_ ic (e) e* 

In the static-geometric analogy a quantity which corresponds to it- 
self can be called an invariant. For example, l/3 h2 (1 - /.L~ 1 is an in- 
variant. The concept of an invariant imposes considerable restrictions, 
and having in mind the investigation of a set of homogeneous equations 
of the theory of shells we shall introduce the following more general 
concept. 

We shall define a quasi-invariant as a complex element of the form 
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(1.1) which in the static-geometric analogy corresponds to the same ele- 
ment multiplied by a constant coefficient. We shall find the condition 
for which the complex element Se is a quasi-invariant. 

let us suppose that in the static-geometric analogy E*(e) is a quantity 
corresponding to t(e), and Se* is a quantity corresponding to Se. For 
(l.l), applying the static-geometric analogy, we obtain 

_* l 

_ * (e) e (1.2) S, = e + iE 

The condition of quasi-invariance for 
as 

the element Se can be written 

S, = KS,* (1.3) 

or alternatively 

e + iE (e) e’ = K [e* + iE* (e) e] 

From this, after identifying the coefficients of 

e*, we have 

1 = KiE* (e), it (e) = K 

and consequently, eliminating K, we obtain 

E* (4 = - & 
Since the complex element SC must be homogeneous dimensionally, 

the elements e and 

(1.4) 

(I.51 

according to the remarks made at the beginning of the present section, 
it follows that t(e) h as the dimensions of a force. Thus 

I E (4 I = I F I (1.8) 

A more general expression for c(e), composed of all the constants 
appearing in the static-geometric analogy [3 I, is of the form 

E(e) = F,mF,““DlpD,p’ (2)” (zr (2 2>’ (2 2)” (2 $)” (2 f$f-,“‘X 

x (4~)‘(~~(~)“(_~)“(-~)“’ (-z)* (-E)‘(2$ (1.7) 

Expressions (1.5 ), (1.6) and (1.7) show that a further requirement 
must be satisfied, that e(e) is independent of the chosen element e. In 
this case it is necessary that 
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In future we shall write C$ for c(e). 

We shall apply condition (1.6); noting that 

([F] is the dimension 

]b-l] = [F,] = ]FJ[L]_', ]D,] = [U,] = [F"l-l[JC-l of a force, IL.1 of a 
length) 

and that the remaining parentheses in Expressions (1.8) are dimension- 

less quantities, we have 

the other indices remaining indeterminate for the time being. 

If we apply condition (1.51, on the basis of the relations derived in 

[31, we have 

so that 

It will be noted that q, 

Note. If the coefficient 

is a quasi-invariant, then 

r1 s, t remain arbitrary. 

5 is determined such that 

A.,, = C' -;- i&C 

is also a quasi-invariant if X is dimensionless, and it satisfies in the 

static-geometric analogy the condition 
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(1.10) 

'Ihe proof of this is obvious. 

In this connection we can discard in Expression (1.9) the indeter- 

minate factors, which, as can easily be shown, satisfy condition (1.10). 

Consequently, we can take 

E= (1.11) 

Making use of the notation described in the appendix, we have for the 

general case 

j = 2h2 y ; A11A2z 
~11% 

or, if we make use of the engineering constants, 

E = 2h2 ,/ $ 

where 

(1.12) 

(1.13) 

(1.14) 

In particular, we have from this that for isotropic and orthotropic 

shells, 

2. 

respectively, 

E= 
2hZE 

v3 (1 - P‘? ’ 

Formulation of the equations of the theory of thin 
elastic homogeneous shells in complex quantities. It follows 

from the above that groups of relations which correspond to each other 

in the static-geometric analogy can be combined to form quasi-invariant 

complex systems, the new functions introduced being quasi-invariants. 

For example, the sets of equations of equilibrium in terms of forces 

and the equations of continuity of strain can be combined in this way to 

form a single set, and the new unknowns are complex quantities. Thus* 

* For simplicity, an orthogonal system of coordinates has been used. but 
the results remain valid in any other system. 
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Here 

TI = Tl + iEx2, S, = S, + i&(z), iVl = N, - i& 

T2 = T2 + ih, S, = S, + i&(l), N2 = N, + i& 
(2.2) 

GI = G1 + it% HI = H, - i&o(2) 
G2=G2$i&, H2 = H, - igo 

It should be noted that to the set (2.1) must be added a further 

equation 

H1+H2=0 

The set of equations (2.1) is analogous 
librium equations in the isotropic case. 

(2.3) 

in form to the set of equi- 

'Ihe relations between the forces and stress functions on the one hand, 

and those between strains and displacements on the other, can also be 

combined to form a single set of relations between the complex forces and 

complex stress functions in the following manner: 
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Here 

a = a + iEu, b = b + iEv, c = c + iEw (2.5) 

and n is denoted as 

(2.6) 

The functions a, b, c satisfy the condition of the homogeneous complex 
system (2.1), which is the reason why they are called complex stress 

functions. In view of (2.6) the complementary equation (2.3) is satis- 

fied identically. 

We shall consider now the case of equations containing heterogeneous 

quantities. 

Two analogous equations can be combined to form a quasi-invariant 

complex in the form of a single equation expressed in quasi-invariant 

unknowns. 

Suppose that 

Z Lj(ej) + ZfkMk (q’) = 0 (2.7) 

is some homogeneous expression in which Lj and Mk are linear operators 

not containing the geometric or elastic constants which appear in the 

static-geometric analogy (they may contain coefficients of the first or 

second quadratic form of a surface), and ej and ek* are the elements of 

the first and second groups, respectively, multiplied, perhaps, by 

dimensionless constants. 

On the basis of the static-geometric analogy there exists a homo- 

geneous relation duplicating Expression (2.7): 

Z Lj (ej’) + Z fk*Mk (e,) = 0 (2.8) 

where fk* is a quantity analogous to fk. Multiplying Equations (2.8) by 

it and adding the result to Equation (2.7), we obtain 

Z Lj (ej + igej') + Z Mk (fkek’ + iEfk*ek) = 0 

or 
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It is apparent that the quantities ej + itej* are quasi-invariants 

and, in accordance with previous notation, we can write Sj = ej + i te.*. 
I 

We shall show first of all that 

c,; - i 
/ii I 

TCh 
are quasi-invariants. To do so, we note that 

i f,, ’ 

I I =lF{, + fs* 
c - --> 

k 
-ffl,lE = - f,iljf,* 

and consequently 

fk -- -* = Ah. 
E"f, c Ah.<- -+; (2.10) 

Here A, is a dimensionless constant satisfying the conditions of the 

note in Section 1. Thus 

fk 
ek-ii 

gi,,- 
e,,* = eli -t iEhkek* 

are quasi-invariants. In accordance with the previous notations we have 

ek $ @kek* = + [(I+ hk) Sk + (1 - hk) Sk] 

Consequently, Equation (2.9) can be written in the final form 

fir, [(I + hk) Sk + (1 - hk) Sk.1 = 0 (2.11) 

where A, is given by (2.10). 

Example. For a shallow shell referred to the lines of curvature (a,P) 

we obtain a first equation in the form 

1 @c 1 8% 2Eh3 
z p + -jj,bp.L - 3 (1 _ pZ) nnw =’ 

in which c is the third stress function and 10 is the displacement normal 

to the middle surface. This equation can be represented in the form 

where 
2Eh3 

f = - 3 (I- pL3) 
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By the static-geometric analogy f* = l/2 Eh and, consequently, irout 

(2.10) we have 

Thus, from (2.10), we find that 

L (Cl + v3 (,‘” p2) M (f-3 = 0 

since cc + w, because 
1 8% i a‘% ih _^- -- 

& ace + RI 832 + 1/3(f_-IcB) AAc==a 

3. ~~ple~e~ta~ equations in the theory of thin adso- 
tropic shells. "lb result of the previous section enables us to write 
down Haoke's equation in the form of three non-differential linear equa- 
tions, relating the complex moments G,, G,, H, and the complex forces 
T,, Tz and S,. We shall call these the complementary equations. 

We shall make use of the relations 

Employing the method given above, we can now write down the complement- 

ary equations in the form 

where 
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Thus, the sets of equations (2.11, (2.4) and (3.1) combine all the 
basic equations of the theory of thin homogeneous shells. 

Appendix. Using the notation given in [I 1, we can write down the ex- 
pressions for Hooke’s law [ 3 1 : 

shear forces 

moments 

In terms of the strain components, Hooke’s law 
f0l.m 

2+g __ I 

can be written in the 

Hooke’s law expresses the fact that there is a Plane of elastic sYm- 
metry, tangential at every point in a three-dimensional medium occupied 
by the shell, to a surface equidistant from the middle surface [3,9,10 1 * 

The 
by the 

elastic constants A. . 
21 

and the strain coefficients a. . are given 
‘J 

formulas 

all ax2 a13 

a21 a22 a23 

a31 a32 a33 
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where (- l)iti aij is an algebraic complement of the element aijw 

The physical meaning of these constants [9 1 is obvious. 

The relations of the static-geometric analogy for the anisotropic case 
are [3 1 

P1= ZhAll, 3 
D,= -all, 

2h3 
Fz = 2hAzz, Dz=$.-a2~, F~+-+-DD~, Fz++-DI 

42 a21 A21 a12 2 43 a23 
._c+_, -a--+-, L--t+---, 2& + -, - a13 - 

A22 all A22 a11 A22 all A22 a11 

2 -431 a32 A32 031 4 A33 ass 
_t-+--, 2-e-+---, -++- 

-422 aI1 A22 all A22 a11 
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